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Abstract

There is an increasing need to effectively control micro-vibration in such fields as metrology, optics and
micro-electronics. This paper describes the design of an adaptive feedforward strategy for vibration
isolation of harmonic disturbance using a piezoelectric actuator with hysteretic behavior. A nonlinear
analytical model of the piezoelectric actuator including a ferroelectric-like behavior is built using a Preisach
model of hysteresis. Pre-multiplication of a single-frequency reference signal by the nonlinear model of the
stack is investigated in order to effectively compensate the actuator nonlinearity. It is observed that a simple
linear model of the stack is sufficient in the adaptation of a filtered-X LMS feedforward controller to
effectively compensate the actuator nonlinearity, provided the reference signal has frequency components
at the disturbance frequency and its higher harmonics.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

There is an increasing need to effectively control micro-vibration in such fields as metrology,
optics and micro-electronics [1]. Traditionally, the control of vibration transmission from a
vibratory source to a receiving structure involves passive mounts between the source and
receiving structure. However, the performance of passive mounts is usually limited by a trade-off
between the required large static stiffness and large dynamic flexibility. A promising alternative in
see front matter r 2005 Elsevier Ltd. All rights reserved.
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micro-vibration control is the use of active systems based on rigid piezoelectric actuators. Indeed,
piezoelectric actuators combine an almost unlimited displacement resolution with a displacement
capability in the micrometer range. However, to guarantee a high precision in positioning or in
active vibration control applications, nonlinearity of piezoelectric actuators should be taken into
account. The nonlinear behavior of piezoelectric actuators originates from an hysteresis between
the applied electric field and resulting electric polarization especially under large driving voltage.
This translates into significant nonlinearity in the control path and is usually detrimental to the
control performance. An approach to address this problem is to linearize the transducer using a
control strategy which includes a model of the hysteretic behavior. Previous work has focused on
the modeling of a nonlinear transfer function between the electrical input and the mechanical
output. Several strategies have been used in recent years like phaser loop feedforward controller
[2,3] or Preisach model for hysteresis [4,5]. Adaptive strategies have also been studied such as
ARMAX models [6,7], or simple hysteresis operators such as the linear-play operator (LPO)
[8–11] in adaptive inverse hysteretic controllers and inverse feedforward controllers. However,
these strategies are subject to fail if only the actuator displacement is taken into account in the
nonlinear model. A more complete model should include the coupled displacement and force
variables of the actuator. The approach introduced here is to use a nonlinear physical model of
the actuator as an internal model in an adaptive filtered-X LMS feedforward algorithm. Tiersten
[12] contributed significantly to the linear modeling of piezoelectric materials. He also suggested
improvements of the linear theory by introducing the electric field dependency of piezoelectric
coefficients using higher-order approximations in the case of a large electric field [13]. The use of a
mixed variational principle was also used to take into account the recoverable nonlinear behavior
of electroelastic materials [14]. In this paper, the physical model is derived from the Huang and
Tiersten theory of thermo-electro-elasticity [15], in which the ferroelectric hysteretic behavior is
modeled as a discrete mathematical Preisach model of hysteresis [16–18]. This model implies
nonrecoverable nonlinearities due to ferroelectric behavior. The physical modeling is applied to a
single-axis stack actuator and focuses only on minor loops of hysteresis under operating voltage
well-below saturation.
Section 2 presents the nonlinear model of a piezoelectric stack including hysteresis between

electric field and polarization that was used in the active control application. Section 3 details the
experimental identification of the stack based on a Preisach model of hysteresis. Section 4 presents
active control simulations and experiments that were completed using the previous nonlinear
model of the control path.
2. A nonlinear model of stack actuators including the electric field versus electric polarization

hysteresis

2.1. 3D constitutive equations

The constitutive equations of linear piezoelectricity are the well-known relations [12]

sij ¼ Cijklgkl � ekijEk,

Di ¼ eiklgkl þ �ikEk, (1)
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where s, g, E, D denote the stress tensor, strain tensor, electric field and electric displacement,
respectively; C, e and � are the usual elastic, piezoelectric and dielectric susceptibility tensors.
Piezoelectric stack actuators generally do not conform to Eq. (1) because of ferroelectric
hysteresis: the dipole orientation (and therefore electric polarization or electric displacement) of
the piezoelectric medium does not follow instantly the changes of the electric field, giving rise to
hysteresis. Huang and Tiersten have suggested an analytical framework for polarized
piezoceramics under ferroelectric hysteresis and have investigated the case of piezoelectric plates
with a polynomial approximation of hysteresis [15]. In this theory, the electric polarization P ¼

�0E�D (�0 is the void electric permittivity) of the piezoelectric continuum is broken in a part ~P
linearly related to E, and a nonlinear part P̂ which is the image of the ferroelectric nonlinearity,

P ¼ ~Pþ P̂. (2)

The general constitutive equations of piezoelectricity have been obtained by Huang and Tiersten
under small displacement assumption and hysteresis along one-axis only [15]. These equations
have recently been generalized by Pasco for an arbitrary direction of polarization [16,17]. The
following new thermodynamical functional accounting for electric hysteresis, material anisotropy
and small mechanical was proposed

r0w ¼
1
2

Cijklgijgkl � ekijEkgij �
1
2
�ijEiEj þ

1
2
r0dmijklP̂mgijgkl

� r0gklijP̂kElgij �
1
2
r0akijP̂kEiEj � r0akijP̂kgij � r0P̂

0

i Ei, ð3Þ

where P̂ ¼ P̂=r0 is the specific electric polarization, r0 is the mass density of the medium, d, g, a, a

are tensors of ferro-electro-elastic interaction coefficients first introduced by Tiersten and P̂
0

i is the

initial remanent specific polarization in each direction i. Assuming an anisotropic material, the
constitutive equations associated to the thermodynamical functional equation (3) are, in
contracted form [16,17]:

Pi ¼ eiaga þ �ijEj þ gjiaP̂jga þ akijP̂kEj þ P̂
0

i þ P̂i,

sa ¼ Cabgb � eiaEi þ diabP̂igb � gijaP̂iEj � aiaP̂i. (4)

In Eq. (4), the first 2 terms on the right-hand side of the equality account for linear
piezoelectricity. The remaining terms are used to correct coefficients in the linear terms as a result
of the irreversible polarization, as well as introduce a constitutive dependence on the irreversible
polarization itself. In this formulation, nonlinearities are introduced by the hysteresis effect
between polarization P̂ and the electric field E, P̂

0

i is the initial remanent polarization in each
direction i and d, g, a, a are tensors of ferro-electro-elastic interaction coefficients first introduced
by Tiersten. These additional coefficients eventually need to be identified by experiments. Note
that an alternative form of Eq. (4) is

Pi ¼ ðeia þ gjiaP̂jÞga þ ð�ij þ akijP̂kÞEj þ P̂
0

i þ P̂i,

sa ¼ ðCab þ diabP̂iÞgb � ðeia þ gjiaP̂jÞEi � aiaP̂i. (5)

By comparing Eqs. (1) and (5), it is clear that the nonlinearity effectively modifies the classical
elastic, piezoelectric and dielectric coefficients of the medium.
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2.2. Reduction to a stack actuator

The general, 3D constitutive equations (4) are applied to a piezoelectric stack actuator with
electrodes in parallel configuration (Fig. 1). Stack actuators are made of several thin layers of
piezoelectric material subject to an electric field in the thickness direction (defined in the direction
3), and are used to generate motion or forces also in the thickness direction. The lateral surfaces
consequently have free mechanical and electrical boundary conditions. Electrodes and bonding
layers were assumed to be thin enough to ensure continuity of the axial stress gradient of the entire
body of the actuator. Therefore, the actuator can be assumed to be geometrically identical to a
uniaxial rod. Since the electric field is applied in a layer’s thickness direction, and this thickness is
small compared to its lateral dimension, it is appropriate to consider the electric field in a layer
independent of the lateral dimensions (1 and 2). Because of the continuity of the electric
displacement and the free electrical and mechanical boundary conditions in the transverse
directions, the electric polarization in the lateral directions must vanish. As a consequence, the
nonlinear part of the electric polarization will exist only in the axis of the actuator

Ei ¼ di3E3,

P̂i ¼ di3P̂3, (6)

where dij is the Kronecker-delta symbol. The total axial displacement of the actuator is given by

dltotal ¼

Z
H

g3 dl ¼ n

Z
h

g3 dh, (7)

where n is the number of layers and h is their thickness. Therefore, the behavior of the whole
actuator can be derived from the behavior of a single layer. The stress in the stack is uniaxial, so
that s3 ¼ f and si ¼ 0; ia3, where f is the axial stress applied to the stack (Fig. 2). In the case of
quasi-static mechanical displacement (far below the first natural frequency of the actuator), forces
+
−

P0

P0

+

+

− −

3

(A)

(B)

Fig. 1. Geometrical configuration of a stack actuator showing the positive and negative terminals and the direction of

initial polarization P0.
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Fig. 2. Uniaxial load F applied to the stack actuator (total thickness H) and resulting pressure (s3 ¼ f ) applied on each

layer (thickness h).
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due to inertia are neglected. Applying these assumptions and Eq. (6) to the constitutive equations
(4) results in the following constitutive nonlinear equations of a stack actuator:

s3 ¼
AsgP̂

2

3 þ BsgP̂3 þ Csg

AP̂3 þ B
g3 þ

AsEP̂
2

3 þ BsEP̂3 þ CsE

AP̂3 þ B
E3 þ

AsP̂
2

3 þ BsP̂3

AP̂3 þ B
,

P3 ¼
APgP̂

2

3 þ BPgP̂3 þ CPg

AP̂3 þ B
g3 þ

APEP̂
2

3 þ BPEP̂3 þ CPE

AP̂3 þ B
E3 þ

APP̂
2

3 þ BPP̂3

AP̂3 þ B
þ P̂

0

3 ,

P1 ¼ P2 ¼ 0,

E1 ¼ E2 ¼ 0 (8)

and

g1 ¼ g2 ¼
ð�P̂3d313 � c13Þg33 þ ðe331 þ P̂3g331ÞE3 þ P̂3a31

AP̂3 þ B
, (9)

where the various constants that appear in Eqs. (8) and (9) depend on the usual elastic,
piezoelectric, dielectric coefficients and the new ferro-electro-elastic coefficients,

A ¼ d311 þ d312,

B ¼ c11 þ c12,
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Asg ¼ d333ðd311 þ d312Þ � 2d2
313,

Bsg ¼ c33ðd311 þ d312Þ þ ðc11 þ c12Þd333 � 4c13d313,

Csg ¼ ðc11 þ c12Þc33 � 2c213,

AsE ¼ �APg ¼ �g333ðd311 þ d312Þ þ 2d313g331,

BsE ¼ �BPg ¼ �e33ðd311 þ d312Þ � ðc11 þ c12Þg333 þ 2c13g331 þ 2d313e31,

CsE ¼ �CPg ¼ �ðc11 þ c12Þe33 þ 2c13e31,

As ¼ 2d313a31 � ðd311 þ d312Þa33,

Bs ¼ 2c13a31 � ðc11 þ c12Þa33,

APE ¼ a333ðd311 þ d312Þ þ 2g2
331,

BPE ¼ �33ðd311 þ d312Þ þ ðc11 þ c12Þa333 þ 4e13g331,

CPE ¼ ðc11 þ c12Þ�33 � 2e231,

AP ¼ 2g331a31 þ d311 þ d312,

BP ¼ 2e31a31 þ c11 þ c12. (10)

Eqs. (8)–(10) show that the nonlinear model of the stack actuator depends on the irreversible
polarization P̂3 and on the ferro-electro-elastic coefficients d311, d312, d313, d333, g331, g333, a31, a33.
As a comparison the linear equations of the stack actuator (P̂3 ¼ 0) would simplify to

s3 ¼
Csg

B
g3 þ

CsE

B
E3,

P3 ¼
CPg

B
g3 þ

CPE

B
E3. (11)

In order to implement the nonlinear model of the stack described by Eq. (8), it is necessary to
determine both the nonlinear part of the polarization P̂3 and the ferro-electro-elastic coefficients



ARTICLE IN PRESS

Y. Pasco, A. Berry / Journal of Sound and Vibration 289 (2006) 481–508 487
d311, d312, d313, d333, g331, g333, a31, a33 that appear in Eq. (10). In the following, an experimental
procedure is presented to identify both P̂3 and the ferro-electro-elastic coefficients. The nonlinear
part of the polarization P̂3 is identified using a Preisach model of hysteresis and the ferro-electro-
elastic coefficients are identified using a least-squares fit from the experimental data. It is assumed
here that the usual elastic, piezoelectric and dielectric constants c, e and � of the material are
known a priori.
3. Experimental identification of a piezoelectric stack actuator

3.1. Preisach model of ferroelectric hysteresis

This section is concerned with the identification of the irreversible polarization P̂3 in the
nonlinear constitutive equations of the stack. The modeling of hysteresis in ferroelectric materials
is discussed in Ref. [16]. In this paper, the polarization versus electric field hysteresis of a
piezoceramic material is modeled with a Preisach model. The governing equation for the Preisach
model of hysteresis is [18]

PPr;3ðtÞ ¼

Z Z
P

mða; bÞ½ĜabE3�ðtÞdadb. (12)

The hysteretic operator Ĝab is called a Hysteron and can be interpreted as an elementary relay
hysteresis (see Fig. 3). The pair ða;bÞ with aXb define switching values for which the output of the
hysteron Ĝab changes its value; the variables a;b take their values between the minimum and
maximum values of the applied electric field, Emin and Emax. The output of the hysteron Ĝab can
take only two values: �1 or þ1. The domain P is defined as the half-plane P ¼ fða; bÞ j aXbg; a
pair of values ða; bÞ thus defines a given hysteron, and a continuum of hysterons have to be
considered in order to build the model. At any given time, the domain P is divided into two sub-
domains P� and Pþ which are defined as the set of ða;bÞ values for which Ĝab ¼ �1 and
Ĝab ¼ þ1, respectively. The surface mða;bÞ defines weights of elementary hysterons in the
calculation of the output PPrðtÞ.
+1

-1

� �

��Γ^

Fig. 3. Hysteron Ĝab of an elementary domain and unpolarized state in a general Preisach model of hysteresis.



ARTICLE IN PRESS

Y. Pasco, A. Berry / Journal of Sound and Vibration 289 (2006) 481–508488
The constitutive equations (8) show that the new ferro-electro-elastic constants are defined from
the nonlinear part of the polarization P̂ only. Therefore, the value of P̂ must only take in to
account the nonlinear contribution of the model [15],

P̂3 ¼ PPr;3ðE3Þ � bE3. (13)

It can be shown [15–17] that the linear rate b is related to the piezoelectric coefficients e31, e33 and
the new coefficients a31 and a33 by

b ¼
e31

a31
¼

e33

a33
. (14)

Therefore, the values of two of the new ferro-electro-elastic constants a31 and a33 are known
provided b is known.

3.2. Experimental setup and identification

A BM532 PZT5H piezoceramic actuator (provided by Sensor Technology Limited) was used in
the experiments. It consists of a 50 layers stack, each layer having a 0.2mm thickness. The
maximal-free displacement is about 3mm for an applied voltage of 100V in the 33 direction, and
the useful force generated is about 150N (for a displacement capability of 25% of the maximal
free displacement). In the experiments, one end of the stack was fixed and the other end was free
(corresponding to s3 ¼ 0 in Eq. (8)). A depolarization electrical cycle was also applied on the
actuator before identification of the new constants. It consists of a large amplitude, periodic
electric field decreasing to zero in amplitude to achieve a zero dynamic polarization initial state.
This was used to make sure that the initial static polarization state is the same for each
experiment.
As detailed previously, the identification of the new model of the stack consists of two

independent optimizations: first, the Preisach model for the nonlinear relation between electric
field and polarization is identified according to Eq. (12), in order to obtain the irreversible part P̂3;
second, the new ferro-electro-elastic coefficients of the stack are derived from Eqs. (8) and (10).
The identification requires measuring the free displacement of the stack, applied voltage and
polarization. The free displacement d and applied voltage U are related to the transverse
deformation and electric field through d ¼ nhg3, U ¼ �hE3 where n is the number of layers in the
stack and h is the thickness of a layer. The free displacement at the top of the stack actuator was
derived from the velocity measured using a Doppler laser vibrometer. The average electric
polarization was measured using a Sawyer–Tower bridge: by measuring the voltage U0 between
the two electrodes of a known serial capacitance c0, one can obtain the average electric
polarization of the stack electrodes using the relation

P3 ¼
U0c0

nS
� �0

U �U0

h
,

where S is the area of the stack electrode [17].
All these signals (transverse velocity at stack’s free end, applied voltage and average

polarization of stack electrodes) were measured synchronously using a 32 input/output real-
time Dspace system. In this article, experimental hysteresis cycles are plotted on an average time
period (where the cycle is stable), and cycles identified from the model are plotted assuming an
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initial state of zero polarization, since the initial spontaneous polarization cannot be identified
using the Sawyer–Tower circuit.
3.2.1. Identification of the polarization
In theory, the saturation curve of the piezoceramic is necessary to construct the Preisach model

of major hysteresis loops [19]. However, in the case of a stack actuator, the large electric field
necessary to obtain a saturation of the ceramic is not easily reached. This study rather focused on
the measurement and identification of minor hysteresis loops (Fig. 4). As discussed previously, the
initial spontaneous polarization P0

3 was not measured in the experiments and was assumed to be
zero in the model. The Preisach mathematical model of minor loops was built with the method
described by Mayergoyz [18]. In order to determine mða;bÞ, a set of first-order reversal curves of
hysteresis is needed. Experimentally, these curves can be obtained by first decreasing the applied
voltage to the smallest needed to bring all hysterons to the �1 state. Next, the voltage is
monotonically increased to a value a (this curve corresponds to an ascending branch of the minor
loop) and finally, the applied voltage is decreased to a new fixed value b. The measured
polarization of the stack corresponding to the conditions a and b is noted f ab (Fig. 5). This
operation needs to be repeated to cover all values of a and b in the interval of the operating
3

Ec

P
3
0

3

P3
S

Saturated Curve 

of polarization

measured curve

of polarization

Fig. 4. Saturation curve of polarization (thin) and measured curve (bold) for an increasing and decreasing applied

voltage (initial polarization P0
3, saturation polarization Ps

3 and coercitive electric field E0
3).
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Fig. 5. Measuring reversal curves of polarization P as a function of the electric field E: methodology to obtain the

coefficients f ab of the Preisach ponderation surface.
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applied voltage, and the resulting polarization f ab is measured for each combination of a and b. In
our case the applied voltage varied between Umin ¼ �100V and Umax ¼ 100V (corresponding to
an applied electric field between Emin ¼ �2:5� 105 V=m and Emax ¼ 2:5� 105 V=m in each layer).
According to Mayergoyz [18], the weighting surface m in Eq. (12) is related to the measured

polarization f ab by the relation

mða; bÞ ¼
1

2

q2f ab

qaqb
.

The determination of m therefore involves finite double differentiation of the measured
polarization. However, results obtained by finite differentiation are accurate only if the number
of points is large. In order to compute the weights, it was chosen instead to use a simple
parameterization of the weighting surface mða; bÞ borrowed from ferromagnetic hysteresis
modeling [20]. In this model, the ða; bÞ plane is mapped to the ðEi;EcÞ plane, where Ei and Ec are
two new variables in ½Emin;Emax� defined by a ¼ Ei þ Ec and b ¼ Ei � Ec.
The parameterized weighting surface is defined in ½Emin;Emax� by

mðaXbÞ ¼ Pmax½ð1� cÞma4b þ cmða¼bÞ�, (15)
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where

mða¼bÞ ¼
1þ

EiX a

2Pmax=p

� �2
R Emax

Emin
1þ

EX a

2Pmax=p

� �2 !
dE

,

mða4bÞ ¼
e�ððEc�E0Þ=E0Þ

2

1þ
EiX a

2Pmax=p

� �2 (16)

and fPmaxX aE0cg
T is the vector of the parameters to be identified in the model. These parameters

represent, respectively, the maximum electric polarization reached in the range of applied electric
field, the initial rate of polarization, the remanent electric field and finally, a weighting coefficient
which is used when the polarization saturation is not reached in the range of applied electric field.
The coefficient c can be reduced to zero to model a complete saturation curve.
The identification of these parameters relies on a method of unconstrained minimization that

minimizes the squared norm of the vector containing the differences between an evaluation of the
model versus the experimental data. The electric polarization calculated from the model and
experimentally measured as a function of electric field, are the only data needed to compute the
optimization. The method uses the algorithm of Levenberg–Marquardt [21,22]. During the
experiments, the applied electric field EðtÞ ¼ E3ðtÞ was chosen as a sinusoidal signal on a single
period to achieve identification by the use of the Sawyer–Tower bridge. The frequency of the
signal should normally ensure that the quasi-static electric field hypothesis is satisfied. A
frequency of 150Hz was chosen. It is important to note that since quasi-static identification is not
allowed by the use of the Sawyer–Tower bridge, the identified parameters are related to minor
hysteresis loops around the initial state of polarization. The sampling rate was 9000Hz, therefore
60 points were obtained per stable cycle. After running the minimization algorithm, the optimized
values of the model parameters found are fPmaxX aE0cg

T ¼ f0:063C=m3; 1:558� 10�8 C=Vm2;
2:877� 104 V=m; 0:645gT. The value found for c is not zero which confirms that the electric field
used is far from saturation. The above values were used to construct the weighting surface
according to Eq. (15). A discrete version of the Preisach model, Eq. (12) was then implemented
using a 51� 51 matrix of values mðai; bjÞ defined for regularly spaced values ai and bj in the
operating range of electric field.
3.2.2. Identification of the new ferro-electro-elastic coefficients

The vector of the new ferro-electro-elastic constants

fd311 d312 d313 d333 g331 g333 bgT

is identified using the experimental data of displacement, applied electric field and polarization of
the stack, together with Eqs. (8), (13) and the identified Preisach model between polarization and
electric field. The same Levenberg–Marquardt optimization method is used to derive optimal
values of the constants such that the deviation between Eq. (8) and the experimental data is
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minimized. A sinusoidal voltage was applied to the stack between Umin ¼ �100V and
Umax ¼ 100V, and the frequency used for the identification was 150Hz.
The usual linear constants of the stack used in the model are those for PZT5H: for this material,

the compliance matrix is

½s� ¼ 1� 10�12

16:5 �4:78 �8:45 0 0 0

�4:78 16:5 �8:45 0 0 0

�8:45 �8:45 20:7 0 0 0

0 0 0 43:5 0 0

0 0 0 0 43:5 0

0 0 0 0 0 42:6

2
666666664

3
777777775
. (17)

The piezoelectric strain constant matrix is

½d� ¼ 1� 10�12
0 0 0 0 741 0

0 0 0 741 0 0

�274 593 0 0 0 0

2
64

3
75. (18)

The permittivity constant matrix is

½�� ¼ 8:854� 10�12
3130 0 0

0 3130 0

0 0 3400

2
64

3
75. (19)

Therefore, the elastic constants ½c� and piezoelectric charge constants ½e� which are used in the
model are given by ½c� ¼ ½s��1 and ½e� ¼ d½s��1. The identified new ferro-electro-elastic coefficients
found after minimization are

d311 ¼ �4:96� 1012 N=C,

d312 ¼ �3:82� 1012 N=C,

d313 ¼ �3:82� 1012 N=C,

d333 ¼ �1:99� 1012 N=C,

g331 ¼ 1:45� 105 NV=Cm,

g333 ¼ 1:13� 105 NV=Cm,

a31 ¼ �2:25� 108 N=C,

a33 ¼ 7:90� 108 N=C,

b ¼ 2:94� 108 C=Vm.
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Fig. 6. Polarization P3 versus applied electric field E3, hysteresis of the BM532 PZT5H piezoceramic actuator

(measurement: dotted line, model using the Preisach operator: solid line).
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These constants are to be compared with the ones estimated by Huang et al. for plates [15]. As an
example, these authors identified the two first plate constants d

p
1 ¼ �4:3� 1012 N=C and

d
p
2 ¼ �2:2� 1012 N=C. These values are comparable to our values of d311 and d312.
Fig. 6 shows the measured hysteresis between electric field and polarization as well as the

Preisach model identification. The Preisach model is in good agreement with the measured data.
Fig. 7 shows the measured hysteresis between electric field and generated displacement on top of
the stack, together with the model identification; again, the model appropriately describes the
hysteresis in terms of mechanical displacement versus applied electric field. Fig. 8 presents the
measured free displacement of the stack versus time, as well as linear and nonlinear model results
(in the linear case, only the linear constants were used in the model, according to Eq. (11)). These
results clearly show that the linear model significantly deviates from the measured data; on the
other hand, the nonlinear model dramatically improves the prediction in terms of generated
displacement. The following section investigates the use of the nonlinear model of the stack
actuator in active vibration isolation experiments.
4. Active vibration isolation using a piezoelectric stack actuator: Analysis and simulations

The application presented in this section involves the isolation of deterministic (single
frequency) vibrations from a vibrating base to a platform, representing e.g. a sensitive equipment
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Fig. 9. Schematics and photograph of the tested active isolator. u, e are, respectively, the applied voltage and the error

signal.
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to be isolated from ground vibrations. A one-axis active isolator was implemented with one stack
actuator to control the transmission of vibration in the transverse direction only, Fig. 9. A
reference signal of the base excitation is used in an adaptive feedforward controller to cancel the
acceleration transmitted to the platform. In general, the propagation delay of the disturbance
between the reference sensor and the top of the stack is smaller than the iterative turnaround
controller time, so that causality would not be respected for random base perturbation [3];
however, only the case of deterministic perturbation is considered here, and causality is therefore
not a constraint. Fig. 10 shows the corresponding general feedforward control situation. In this
figure, x is the reference signal, dðo0Þ ¼ ~Dejo0t is the single-frequency disturbance and H denotes
the plant, or control path (between the control signal u and the signal e provided by an error
accelerometer mounted on the platform). The previous sections have shown that H is a nonlinear
path. In the following, it is assumed that the piezoelectric stack is a weakly nonlinear actuator, in
the sense that the actuator output y to a single-frequency input u at o0 is completely described in
steady state by frequency components at o0 and at multiples no0 with amplitudes well bellow the
fundamental. This is justified by the fact that the actuator operates far below saturation and as a
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consequence, the hysteresis is due to a minor loop of ferro-electric polarization. Therefore, in the
case of a single-frequency disturbance and a perfectly linear controller, the nonlinear behavior of
the stack actuator results in harmonic generation on the suspended mass, which in general
degrades the control performance. In the following sections, a time-domain adaptive feedforward
control architecture is investigated to compensate for the actuator nonlinearity.

4.1. Frequency-domain analysis

The problem of rejecting a harmonic disturbance dðo0Þ ¼ ~D expðjo0tÞ using a feedforward
controller and a nonlinear plant is shown in Fig. 10. Note that in this case, the reference signal is a
harmonic signal at the fundamental frequency o0, xðtÞ ¼ xðo0Þ ¼ ejo0t. Therefore, it is anticipated
that higher harmonics of the fundamental frequency generated by the nonlinear plant will be
present in the error signal. Although Fig. 10 assumes that the plant output and disturbance
linearly add, in reality the disturbance will in general modify the operating point of the actuator
and therefore modify its response [3]. However, the assumption that the plant output and
disturbance linearly add simplifies the analysis.
In the following, we address the problem of adjusting the complex gain of the controller ~Gðo0Þ

in order to minimize the error signal eðtÞ. According to the previous assumption concerning the
plant, the plant output can be written as a linear superposition of harmonic signals,

yðtÞ ¼
XN

n¼0

~yne
jno0t. (20)

Note that in the previous equation, n ¼ 0 defines the DC output and therefore the operating point
of the nonlinear plant. The error signal is

eðtÞ ¼
XN

n¼0

~yne
jno0t þ ~Dejo0t. (21)

We define the criterion to be the energy of the error signal averaged over one fundamental period,

J ¼
1

T0

Z T0

0

½ReðeðtÞÞ�2 dt. (22)

After some algebra and using the Parseval theorem, we obtain

J ¼
1

2

X
na1

j ~ynj
2 þ

1

2
j ~y1 þ

~Dj2 ¼
1

2
eHe, (23)

where e ¼ ½ ~y0 ~y1 þ ~D ~y2 . . . ~yN �
T. On the other hand, the control input is given by

uðo0Þ ¼ ~Gðo0Þe
jo0t. In general, J is not a quadratic function of the complex control gain ~Gðo0Þ,

because there may exist a nonlinear relation between the harmonic components of the error signal
and the complex control gain. However, the simplest adaptation algorithm is to iteratively adjust
this control gain in the direction opposite to the gradient qJ=q ~G.

qJ

q ~G
¼

qð12 e
HeÞ

q ~G
¼

qeH

q ~G
e ¼

qyH

q ~G
e, (24)
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where y ¼ ½ ~y0 ~y1 ~y2 . . . ~yN �
T. The steepest-descent algorithm writes

~Gðnþ 1;o0Þ ¼ ~Gðn;o0Þ � m
qJ

q ~Gðn;o0Þ
ð25Þ

¼ ~Gðn;o0Þ � m
q ~y�0
q ~G

q ~y�1
q ~G

. . .
q ~y�N
q ~G

� �
e, ð26Þ

where m is the adaptation coefficient and � denotes the complex conjugate. The vector

q ~y�0
q ~G

q ~y�1
q ~G

. . .
q ~y�N
q ~G

� �

is equivalent to the sensitivity matrix introduced by Elliott [3,23] and represents the sensitivity of
the harmonics generated by the control actuator with respect to the actuator input at the
fundamental frequency o0. This matrix will in general depend of the operating point of the
actuator, and needs to be identified. The above equation shows that for a nonlinear control
actuator, the update of the controller gain takes into account the generation of higher harmonics
by the actuator. Since there are N þ 1 complex harmonic amplitudes to be controlled and only
one complex control gain, it is not possible to independently control all harmonics with the
structure shown in Fig. 10.
Note that if the plant is perfectly linear, the update equation becomes

~Gðnþ 1;o0Þ ¼ ~Gðn;o0Þ � m
q ~y�1
q ~G

e (27)

and the plant output ~y1 is related to the control gain ~G through the plant transfer function
Hðo0Þ ¼ ~y1= ~G. It follows that in this case q ~y1=q ~G ¼ H, so the update equation for a linear plant is

~Gðnþ 1;o0Þ ¼ ~Gðn;o0Þ � mH�ðo0Þe (28)

which is formally identical to the update equation for a perfectly linear system.
One way of avoiding the limited performance of the feedforward control solution shown in

Fig. 10 is to consider higher harmonics of the disturbance in the reference signal. The
corresponding structure, shown in Fig. 11, is similar to the one proposed by others for the
harmonic control of periodic disturbances of a nonlinear system [3,23]. The problem is to adjust
the various complex gains ~Gk that will act on each of the harmonics ko0 in order to minimize the
resulting error signal eðtÞ; the series of harmonic controllers therefore act to linearize the plant.
Similar to the previous section, we have

yðtÞ ¼
XN

n¼0

~yn expðjno0tÞ, (29)

eðtÞ ¼
XN

n¼0

~yn expðjno0tÞ þ ~D expðjo0tÞ. (30)
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The criterion is still defined as the energy of the error signal averaged over one fundamental
period,

J ¼
1

T0

Z T0

0

½ReðeðtÞÞ�2 dt ¼
1

2

X
na1

j ~ynj
2 þ

1

2
j ~y1 þ

~Dj2 ¼
1

2
eHe, (31)

where e ¼ ½ ~y0 ~y1 þ ~D ~y2 . . . ~yN �
T. The control acts as a series of complex gains ~Gk at the various

harmonics ko0. Note again that J is not a quadratic function of the complex control gains,
because there may exist a nonlinear relation between the harmonic components of the error signal
and the ~Gk. The derivative of the criterion with respect to the control variable ~Gk is

qJ

q ~Gk

¼
qð1

2
eHeÞ

q ~Gk

¼
qeH

q ~Gk

e ¼
qyH

q ~Gk

e, (32)

where y ¼ ½ ~y0 ~y1 ~y2 . . . ~yN �
T. Introducing the vector of complex gains ~C ¼ ½ ~G1

~G2 . . . ~GK �, we have

qJ

q ~C
¼

qyH

q ~C
e ¼ UCye, (33)

where UCy is the sensitivity matrix of the system,

UCy ¼

q ~y�0
q ~G1

. . .
q ~y�N
q ~G1

..

. ..
. ..

.

q ~y�0
q ~GK

. . .
q ~y�N
q ~GK

0
BBBBBB@

1
CCCCCCA
.
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Finally, the steepest-descent algorithm writes

~Cðnþ 1Þ ¼ ~CðnÞ � mUCye. (34)

In this situation, the sensitivity matrix expresses the variation of individual harmonics in the plant
output with respect to individual harmonics in the signal command. The off-diagonal terms of this
matrix describe the interaction between distinct harmonic frequencies which is the consequence of
the plant nonlinearity. In the case of a perfectly linear plant, the sensitivity matrix is diagonal, and
the control becomes as series of independent control gains at distinct harmonics ok. The
adaptation requires an identification of the complete matrix ÛCy around the estimated operating
point of the plant. The structure of the adaptive controller is shown in Fig. 11.
4.2. Time-domain analysis

In practice, the multi-harmonic reference signal was synthesized from a single-frequency
reference signal at the fundamental frequency cosðo0tÞ using a ‘‘harmonic generator’’. Also, the
series of harmonic controllers ~Gk are realized via a unique finite impulse response (FIR) filter
whose coefficients are noted W ¼ ½W 0 W 1 . . .W L�1�

T (Fig. 12). The control signal is

uðnÞ ¼
XL�1
l¼0

W lðnÞxðn� lÞ ¼WTðnÞxðnÞ, (35)

where xðnÞ ¼ ½xðnÞ xðn� 1Þ . . . xðn� Lþ 1Þ�T. The criterion is defined as the instantaneous error
squared, J ¼ e2ðnÞ. The gradient of the criterion with respect to the control filter weights is

qJ

qW l

¼
qe2ðnÞ

qW l

¼ 2eðnÞ
qeðnÞ

qW l

¼ 2eðnÞ
qyðnÞ

qW l

. (36)

At this point, it is convenient to distinguish between ‘‘static’’ and ‘‘dynamic’’ nonlinearity. In a
static nonlinearity (such as a saturation) the output of the plant at time n depends only on the
plant input at time n. In a dynamic nonlinearity (such as a backlash or hysteresis), the output of
the plant at time n depends on the plant input at time n; n� 1; n� 2; . . . : [3]. In the simple case of
u(n) +

e(n)

Non-linear 
plant

y(n)
FIR
W

X

+

x(n)=X1cos(ω0nT )
+ X2cos(2ω0nT)
+...
+ Xkcos(kω0nT)

d(n)=D1cos(ω0nT)
         + D2sin(ω0nT)

∂u
∂y

Fig. 12. Adaptation of a feedforward control of a harmonic disturbance d with a nonlinear (static) plant and a multi-

harmonic reference signal x: time-domain analysis.
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a static nonlinearity, we can write

qyðnÞ

qW l

¼
qyðnÞ

quðnÞ

quðnÞ

qW l

¼
qyðnÞ

quðnÞ
xðn� lÞ (37)

and in vector form,

qyðnÞ

qWðnÞ
¼

qyðnÞ

quðnÞ
xðnÞ. (38)

Therefore, the steepest-descent algorithm takes the form

Wðnþ 1Þ ¼WðnÞ � 2m
qyðnÞ

quðnÞ
xðnÞeðnÞ. (39)

In contrast with a linear system, for which the gradient algorithm requires identification of the
plant transfer function, the gradient algorithm for a static nonlinearity requires identification of
the variation qy=qu (Fig. 12). This needs to be done around the operating point of the plant. Note
that this identification needs to be done for an input signal uðnÞ that contains higher harmonics of
the fundamental frequency o0.

4.3. Time-domain simulations

Time-domain simulations of active isolation were done based on nonlinear models of the
control path H. The nonlinear model is based on the analytical Preisach model of stack actuators
detailed in the Sections 2 and 3 of this paper. The disturbance frequency was fixed to 150Hz, with
an imposed displacement amplitude of 1mm at the isolator base. The two different control
algorithms that were investigated are shown in Fig. 13.
The first algorithm (A1) is a classical filtered-X LMS feedforward algorithm with a single-

frequency reference. The reference signal xðnÞ is the imposed disturbance acceleration at the
isolator base. The control path HPr relates the control voltage of the stack uðnÞ to the acceleration
on top of the stack. HPr is modeled using the previous Preisach model of the stack and therefore
includes hysteretic nonlinearity; for simplicity, the mass of the platform is neglected in HPr and
the stack base is assumed rigid (fixed-free conditions). The control path HPr is modeled using the
first of Eq. (8) in which s3 is set to zero; the acceleration €dltotal of the stack’s free end relative to the
input voltage u is derived from g3 as a function of E3 in the first of Eq. (8). The irreversible
polarization P̂3 is derived from the weighting matrix mðai; bjÞ in the Preisach model and the
identified ferro-electro-elastic coefficients. The control filter W is a FIR filter with nW coefficients
and the model Ĥ of the secondary path H used in the adaptation of the control filter is also a
linear FIR filter with nĤ coefficients.
The second algorithm (A2) is an X-LMS feedforward with a multi-harmonic reference, similar

to Fig. 12. In this case, the single-frequency reference signal is passed through a harmonic
generator in order to synthesize higher harmonics of the disturbance before multiplication by the
FIR control filter. This harmonic generator was taken to be the nonlinear plant model HPr

introduced in the first section of this paper. Although the reference is a single-frequency signal in
this case, the control signal contains the harmonics of the disturbance necessary to compensate the
stack nonlinearity. Also, the adaptation uses a linear model of the variation qy=qu in Fig. 12. This
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linear model was simply taken to be a real gain G between the input voltage of the stack and the
acceleration on top of the stack, derived from the linear constitutive equations of the stack
equations (11).
Note that in Fig. 13, the disturbance acceleration transmitted to the platform when u ¼ 0 is

equal to the base acceleration since the actuator is assumed perfectly rigid. In all cases, the error
signal e is the transverse acceleration transmitted to the platform, and the criterion minimized by
the control filter is the instantaneous acceleration squared e2. The parameters chosen in the time-
domain simulations were nW ¼ 128 coefficients for the control FIR filter, nĤ ¼ 100 coefficients
for the identification filter and the sampling frequency was set to 2.5 kHz.
Fig. 14 shows simulation results for algorithms A1 and A2 in terms of the FFT of the error

signal before control and after convergence of the 2 control algorithms. Table 1 summarizes
transmitted acceleration levels at the disturbance frequency and at the first and second harmonics
of the disturbance after control, as well as the attenuation obtained at the disturbance frequency
with respect to the control off case. As expected, the controller with a single-frequency reference
(A1, Fig. 14(a)) is effective in cancelling the disturbance frequency at 150Hz, but the actuator
nonlinearity produces harmonic generation at the first harmonic (300Hz) and especially at the
second harmonic (450Hz). In this case, the transmitted acceleration levels at the disturbance
frequency and the first and second harmonics are �63:7;�56:7 and �45:6 dB, respectively; the
attenuation of the disturbance frequency is 25 dB. The control filter weights for the various
algorithms, as well as their FFT are plotted in Fig. 15. In the case of A1 (Fig. 15(a)) the filter
weights have a sinusoidal variation at the disturbance frequency, which shows that the control
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Table 1

Active control simulations: results at disturbance frequency and first two harmonics

Algorithm Attenuation at

disturbance

Acceleration level at

disturbance

Acceleration level at

first

Acceleration level at

second

frequency (dB) frequency (dB) harmonic (dB) harmonic (dB)

A1 25 �63.7 �56.7 �45.6

A2 40.6 �78.7 �71.1 �77.5
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signal is also perfectly sinusoidal at the disturbance frequency: the actuator nonlinearity cannot be
compensated in this case. In Fig. 14(a), the additional peaks at multiples of 50Hz are due to
numerical errors in the estimation of accelerations from actuator deformation using sampled data.
The use of the multiple-frequency reference significantly improves the control effectiveness at

higher harmonics of the disturbance (algorithm A2, Fig. 14(b)), even though the plant model in
the adaptation is linear. In this case, the transmitted acceleration levels at the disturbance
frequency and the first and second harmonics are �78:7;�71:1 and �77:5 dB, respectively; the
attenuation of the disturbance frequency is 40.6 dB and the first and second harmonics are
decreased by 14.4 and 32 dB, respectively, with respect to algorithm A1. The weights of the FIR
control filter (Fig. 15(b)) show that the control signal is a multi-harmonic signal that contains
higher harmonics of the disturbance frequency in this case (despite the fact that the reference is a
single-frequency signal). The control algorithm adequately compensates the actuator nonlinearity.
5. Active vibration isolation using a piezoelectric stack actuator: Experiments

An active isolator using a piezoceramic stack actuator was built (Fig. 9). The actuator is the
same BM532 PZT5H Sensor Technology stack as presented in the modeling section; the stack
measures approximately 2 cm in height and 1 cm� 1 cm in cross-section. The actuator was
encased under compressive preloading in an aluminum cylinder in order to ensure operation
under dynamic compressive loads. The suspended platform is a rigid aluminum block which is
attached to the top end of the stack. Its mass is about 29 g with the error accelerometer. Small
elastomer mounts are also used between the casing and the top mass. The error sensor is an
Oceana Sensor Technologies ICP accelerometer ð1000mV=GÞ. The isolator was mounted on a
flexible plate and the disturbance was generated by an electrodynamic shaker exciting the base
plate at a frequency of 150Hz. Fig. 16 shows the resulting acceleration measured by the error
sensor on the suspended mass. The acceleration on top of the isolator contains significant
components at the first and second harmonics of the disturbance frequency (the level of the
second harmonic is about 15 dB below the disturbance frequency): the isolator in its passive form
has therefore some inherent nonlinearity, which is due to mechanical looseness in the mounting of
the piezo stack in the isolator casing. Therefore, in contrast with the previous simulations, not
only the control path but also the primary path has some nonlinear behavior in the experiments.
Two active control algorithms A1e, A2e essentially similar to A1 and A2 were experimentally
implemented in the DSpace environment for real time control.
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The first algorithm (A1e) is a filtered-X LMS feedforward algorithm with a single-frequency
reference. The reference signal x is the input signal to the disturbance shaker. The control filter W
is a linear FIR filter with nW coefficients and the model Ĥ of the secondary path H used in the
adaptation of the control filter is also a linear FIR filter with nĤ coefficients.
The second algorithm (A2e) is a filtered-X LMS feedforward algorithm with a multiple-

frequency reference. The reference signal was synthesized by passing the single-frequency
disturbance x through the nonlinear model of the plant HPr, as shown in Fig. 13. Also, the
adaptation uses a linear model of the variation qy=qu in Fig. 12. This linear model is a real gain G
derived from the linear constitutive equations of the stack equations (11).
The control parameters chosen in the experiments are the same as in the simulations: nW ¼ 128,

nĤ ¼ 100 and the sampling frequency was 2.5 kHz.
Fig. 17 shows the experimental results in terms of the FFT of the error before and after control

using the 2 control algorithms. A1e allows rejection of the disturbance frequency only, since only
the disturbance frequency is observed in the reference signal. The attenuation of the disturbance
frequency, 1st (300Hz), 2nd (450Hz) and 3rd (600Hz) harmonics are 33:7;�0:2; 1:3 and �4:3 dB,
respectively (a negative value meaning an increase).
A significantly better control performance is obtained with the algorithm A2e that includes the

nonlinear model of the control path as harmonics generator, and a linear gain in the adaptation
path: in this case, both the disturbance frequency and the first 3 harmonics are significantly
reduced. The attenuation of the disturbance frequency, 1st, 2nd and 3rd harmonics are 31.3, 9.4,
15.6 and 6.7 dB, respectively. These observations confirm the results of the control simulations.
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6. Conclusions

An analytical model of a piezoelectric stack actuator including hysteresis has been presented.
Compared to the constitutive equations of linear piezoelectricity, the nonlinear model involves
new ferro-electro-elastic constants that account for hysteretic behavior between applied electric
field and resulting polarization. The minor hysteresis loops of the actuator have been identified
with a Preisach model, which allows the new constants to be identified through simultaneous
measurement of applied voltage, polarization and displacement. In the context of active isolation
of single-frequency disturbance using a piezoelectric stack actuator, the hysteretic response of the
actuator generates higher harmonics of the disturbance in the error signal. It was shown that pre-
multiplication of a single-frequency reference by a higher harmonic generator effectively
compensates the actuator nonlinearity. The nonlinear model of the stack was implemented in real-
time as harmonic generator in a X-LMS feedforward controller for active vibration isolation of
single-frequency disturbance. Both simulation and experimental results show that both the
disturbance frequency and its first higher harmonics can be effectively controlled.
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